Skip to main content

How ASCEND Works

FieldValue
Document IDASCEND-CORE-001
Version1.0.0
Last UpdatedDecember 19, 2025
AuthorAscend Engineering Team
PublisherOW-KAI Technologies Inc.
ClassificationEnterprise Client Documentation
ComplianceSOC 2 CC6.1/CC6.2, PCI-DSS 7.1/8.3, HIPAA 164.312, NIST 800-53 AC-2/SI-4

Reading Time: 8 minutes | Skill Level: Beginner

Overview

ASCEND is an AI governance platform that sits between your AI agents and their actions. Every action an agent wants to take is evaluated, risk-assessed, and either approved or denied before execution.

Core Workflow

+---------------------------------------------------------------------------------+
| ASCEND GOVERNANCE WORKFLOW |
+---------------------------------------------------------------------------------+
| |
| 1. AGENT SUBMITS ACTION |
| +-------------------------------------------------------------------------+ |
| | | |
| | Agent: "I want to execute a $50,000 trade on AAPL" | |
| | | |
| | { | |
| | "agent_id": "trading-bot-001", | |
| | "action_type": "trade_execution", | |
| | "parameters": {"symbol": "AAPL", "amount": 50000} | |
| | } | |
| | | |
| +-------------------------------------------------------------------------+ |
| | |
| v |
| 2. RISK ASSESSMENT |
| +-------------------------------------------------------------------------+ |
| | | |
| | ASCEND evaluates the action: | |
| | - Financial impact: $50,000 (+25 points) | |
| | - Operation type: Write (+15 points) | |
| | - Agent history: Good (+0 points) | |
| | - Time of day: Business hours (+0 points) | |
| | | |
| | Risk Score: 40/100 (MEDIUM) | |
| | | |
| +-------------------------------------------------------------------------+ |
| | |
| v |
| 3. POLICY CHECK |
| +-------------------------------------------------------------------------+ |
| | | |
| | Smart Rule: "Trades over $25,000 require manager approval" | |
| | Result: REQUIRE_APPROVAL (Level 3) | |
| | | |
| +-------------------------------------------------------------------------+ |
| | |
| v |
| 4. APPROVAL WORKFLOW |
| +-------------------------------------------------------------------------+ |
| | | |
| | Action queued for manager review | |
| | Notification sent to approval channel | |
| | Manager reviews and approves | |
| | | |
| +-------------------------------------------------------------------------+ |
| | |
| v |
| 5. EXECUTION & AUDIT |
| +-------------------------------------------------------------------------+ |
| | | |
| | Action executed | |
| | Full audit trail recorded | |
| | Evidence pack generated | |
| | | |
| +-------------------------------------------------------------------------+ |
| |
+---------------------------------------------------------------------------------+

Key Concepts

1. Actions

An action is any operation an AI agent wants to perform. Actions are the fundamental unit of governance in ASCEND.

{
"agent_id": "my-agent",
"action_type": "database_query",
"description": "Query customer records",
"parameters": {
"query": "SELECT * FROM customers WHERE region='US'"
}
}

2. Risk Score

Every action receives a risk score from 0-100:

Score RangeLevelTreatment
0-30LowUsually auto-approved
31-60MediumMay require approval
61-80HighRequires manager approval
81-100CriticalRequires admin approval

3. Smart Rules

Smart Rules are conditional policies that determine how actions are handled:

{
"conditions": {
"action_type": "financial_transaction",
"amount_above": 10000
},
"action": "REQUIRE_APPROVAL",
"approval_level": 3
}

4. Approval Workflow

When an action requires approval:

  1. Queued - Action enters pending state
  2. Notified - Approvers are notified
  3. Reviewed - Human reviews details
  4. Decision - Approved or denied
  5. Executed - If approved, action runs

5. Audit Trail

Every action is logged immutably:

  • Who submitted it
  • What was requested
  • Risk assessment results
  • Approval decisions
  • Execution outcome
  • Timestamp and context

Decision Flow

                    ┌─────────────────┐
│ Action Submitted │
└────────┬────────┘

v
┌─────────────────┐
│ Risk Assessment │
└────────┬────────┘

┌──────────────┼──────────────┐
│ │ │
v v v
┌─────────┐ ┌─────────┐ ┌─────────┐
│ LOW │ │ MEDIUM │ │ HIGH │
│ 0-30 │ │ 31-60 │ │ 61+ │
└────┬────┘ └────┬────┘ └────┬────┘
│ │ │
v v v
┌────────────┐ ┌────────────┐ ┌────────────┐
│ Auto │ │ Check │ │ Require │
│ Approve │ │ Policies │ │ Approval │
└─────┬──────┘ └─────┬──────┘ └─────┬──────┘
│ │ │
│ ┌────┴────┐ │
│ │ │ │
│ v v │
│ ┌─────────┐ ┌─────────┐ │
│ │ Auto │ │ Pending │ │
│ │ Approve │ │ Approval│ │
│ └────┬────┘ └────┬────┘ │
│ │ │ │
v v v v
┌─────────────────────────────────────┐
│ Execute Action │
└─────────────────────────────────────┘

v
┌─────────────────────────────────────┐
│ Immutable Audit Log │
└─────────────────────────────────────┘

Security Model

Defense in Depth

ASCEND implements multiple security layers:

  1. Authentication - API keys + JWT tokens
  2. Authorization - Role-based access control
  3. Evaluation - Risk assessment
  4. Policies - Smart rules
  5. Approval - Human oversight
  6. Audit - Immutable logging

Multi-Tenancy

Each organization's data is completely isolated:

  • Row-Level Security (RLS) at database level
  • Separate encryption keys
  • Independent policies
  • Isolated audit trails

Fail-Closed Design

When errors occur, ASCEND defaults to deny:

try:
result = evaluate_action(action)
except Exception:
return {"decision": "DENY", "reason": "Evaluation failed"}

Integration Points

SDK Integration

from ascend import AscendClient

client = AscendClient(api_key="owkai_...")

# Every action goes through ASCEND
result = client.submit_action(
agent_id="my-agent",
action_type="data_access",
parameters={"table": "customers"}
)

if result.decision == "approved":
# Safe to execute
execute_action()

Webhook Integration

# Receive real-time notifications
@app.route('/webhooks/ascend')
def handle_webhook():
event = request.json
if event['type'] == 'action.approved':
trigger_downstream_action(event['data'])

Real-World Examples

Example 1: Trading Bot

Agent: Trading bot wants to execute $100K trade

Risk Assessment: Score 75 (HIGH)
- Large transaction (+30)
- Market hours (+0)
- Verified agent (+0)
- Financial operation (+25)
- No unusual patterns (+0)

Policy Check: "Trades > $50K need VP approval"

Decision: PENDING_APPROVAL

VP reviews and approves

Trade executes with full audit trail

Example 2: Customer Data Access

Agent: Support bot wants to access customer PII

Risk Assessment: Score 85 (CRITICAL)
- PII data (+40)
- Read operation (+10)
- Sensitive table (+20)
- Business justification required (+15)

Policy Check: "PII access requires manager + reason"

Decision: PENDING_APPROVAL with reason required

Manager approves with documented reason

Access granted, logged to compliance trail

Next Steps


Document Version: 1.0.0 | Last Updated: December 2025